Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(21): 34391-34403, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37859196

RESUMO

Spiral-phase-contrast imaging, which utilizes a spiral phase optical element, has proven to be effective in enhancing various aspects of imaging, such as edge contrast and shadow imaging. Typically, the implementation of spiral-phase-contrast imaging requires the formation of a Fourier plane through a 4f optical configuration in addition to an existing optical microscope. In this study, we present what we believe to be a novel single spiral-phase-objective, integrating a spiral phase plate, which can be easily and simply applied to a standard microscope, such as a conventional objective. Using a new hybrid design approach that combines ray-tracing and field-tracing simulations, we theoretically realized a well-defined and high-quality vortex beam through the spiral-phase-objective. The spiral-phase-objective was designed to have conditions that are practically manufacturable while providing predictable performance. To evaluate its capabilities, we utilized the designed spiral-phase-objective to investigate isotropic spiral phase contrast and anisotropic shadow imaging through field-tracing simulations, and explored the variation of edge contrast caused by changes in the thickness of the imaging object.

2.
Opt Express ; 30(15): 27273-27284, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-36236901

RESUMO

Wavelength-tunable spiral-phase-contrast (SPC) imaging was experimentally accomplished in the visible wavelengths spanning a broad bandwidth of ∼200 nm based on a single off-axis spiral phase mirror (OSPM). By the rotation of an OSPM, which was designed with an integer orbital angular momentum (OAM) of l = 1 at a wavelength of 561 nm and incidence angle of 45°, high-quality SPC imaging was obtained at different wavelengths. For the comparison with wavelength-tunable SPC imaging using an OSPM, SPC imaging using a spiral phase plate (manufactured to generate an OAM of l = 1 at 561 nm) was performed at three wavelengths (473, 561, and 660 nm), resulting in clear differences. Theoretically, based on field tracing simulations, high-quality wavelength-tunable SPC imaging could be demonstrated in a very broad bandwidth of ∼400 nm, which is beyond the bandwidth of ∼200 nm obtained experimentally. This technique contribute to developing high-performance wavelength-tunable SPC imaging by simply integrating an OSPM into the current optical imaging technologies.

3.
Appl Opt ; 59(17): 5335-5342, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32543559

RESUMO

We present optical characterization, calibration, and performance tests of the Mesospheric Airglow/Aerosol Tomography Spectroscopy (MATS) satellite, which for the first time, to the best of our knowledge, for a satellite, applies a linear-astigmatism-free confocal off-axis reflective optical design. Mechanical tolerances of the telescope were investigated using Monte Carlo methods and single-element perturbations. The sensitivity analysis results indicate that tilt errors of the tertiary mirror and a surface RMS error of the secondary mirror mainly degrade optical performance. From the Monte Carlo simulation, the tolerance limits were calculated to ±0.5mm, ±1mm, and ±0.15∘ for decenter, despace, and tilt, respectively. We performed characterization measurements and optical tests with the flight model of the satellite. Multi-channel relative pointing, total optical system throughput, and distortion of each channel were characterized for end-users. Optical performance was evaluated by measuring the modulation transfer function (MTF) and point spread function (PSF). The final MTF performance was 0.25 MTF at 20 lp/mm for the ultraviolet channel (304.5 nm), and 0.25-0.54 MTF at 10 lp/mm for infrared channels. The salient fact of the PSF measurement of this system is that there is no noticeable linear astigmatism detected over a wide field of view (5.67∘×0.91∘). All things considered, the design method showed great advantages in wide field of view observations with satellite-level optical performance.

4.
Appl Opt ; 58(6): 1393-1399, 2019 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-30874023

RESUMO

We present the development of a compact f/7.3 (D=35 mm) three-mirror reflective telescope for the atmospheric-research microsatellite Mesospheric Airglow/Aerosol Tomography Spectroscopy (MATS). The telescope design was driven by the end users' need for a reflective wide-field (5.67°×0.91°) optic with high stray light rejection and six detection channels with separate image sensors, operating at wavelengths 270-772 nm. For the first time, a design method for wide-field off-axis telescopes-in which linear astigmatism is eliminated-was applied and tested in practice. Single-point diamond turning was used to produce two sets of 37-110 mm large free-form aluminum mirrors with surface figure errors and roughness values of 34-62 nm (RMS)/193-497 nm (PV) and 2.8-3.5 nm (RMS), respectively. A method that combines precise machining and geometry measurements (using a coordinate measuring machine) was employed to fabricate an aluminum structure to accurately position the mirrors without the need for manual alignment. The telescope was tested with a network of plate beamsplitters and filters, which define the spectral selection for the six detection channels. Imaging performance measurements were carried out using a reflective off-axis collimator, which projects imaging targets at infinite focus. A modulation transfer function (MTF) value of 0.45 at 20 lp/mm was measured at ∼760 nm (diffraction limit: 0.85) using a slanted edge target. By modeling the measured mirror surfaces in optical design software, a reoptimization of the mirror positions could be performed and an improved MTF of ∼0.75 at 20 lp/mm was predicted. The results demonstrate design- and building methods that can be utilized to make off-axis telescopes for a vast range of applications.

5.
Appl Opt ; 54(34): 10137-44, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26836671

RESUMO

Freeform mirrors can be readily fabricated by a single point diamond turning (SPDT) machine. However, this machining process often leaves mid-frequency errors (MFEs) that generate undesirable diffraction effects and stray light. In this work, we propose a novel thin electroless nickel plating procedure to remove MFE on freeform surfaces. The proposed procedure has a distinct advantage over a typical thick plating method in that the machining process can be endlessly repeated until the designed mirror surface is obtained. This is of great importance because the sophisticated surface of a freeform mirror cannot be optimized by a typical SPDT machining process, which can be repeated only several times before the limited thickness of the nickel plating is consumed. We will also describe the baking process of a plated mirror to improve the hardness of the mirror surface, which is crucial for minimizing the degradation of that mirror surface that occurs during the polishing process. During the whole proposed process, the changes in surface figures and textures are monitored and cross checked by two different types of measurements, as well as by an interference pattern test. The experimental results indicate that the proposed thin electroless nickel plating procedure is very simple but powerful for removing MFEs on freeform mirror surfaces.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...